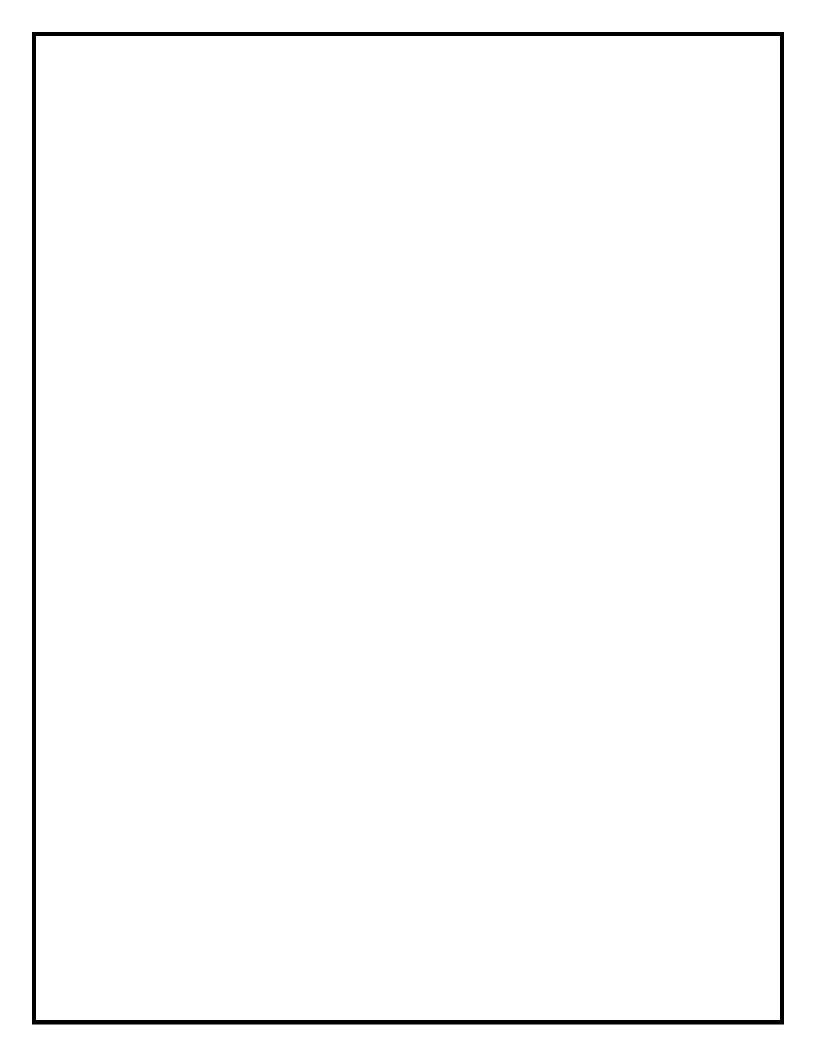


## Department of ECE M. Tech ROBOTICS AND AUTOMATIONS Description of Course Outcomes 2022-2024

| S.NO | COURSE CODE | COURSE NAME                                                    | Cos | COURSE OUTCOME                                                                                                                                                                |
|------|-------------|----------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |             | Non-linear systems and<br>control optimization for<br>robotics | 1   | To introduce the need and concept of nonlinear system and optimizations for robotics                                                                                          |
|      |             |                                                                | 2   | To impart knowledge about different strategies<br>adopted in the analysis of nonlinear systems for<br>robotics engineering                                                    |
| 1    |             |                                                                | 3   | Apply constrained optimization to various physical<br>systems. Implement optimal control algorithms to<br>track the response of the system through a<br>predefined trajectory |
|      |             |                                                                | 4   | To familiarize with the design of different types of nonlinear Robotics controllers                                                                                           |
| 2    |             | Robotics : Cyber<br>Physical Systems                           | 1   | Ability to understand cyber-physical systems are<br>and highlight the main challenges they currently<br>face                                                                  |
|      |             |                                                                | 2   | Ability to Enumerates several fields where cyber-<br>physical systems are widely used.                                                                                        |
|      |             |                                                                | 3   | Gain a knowledge Ability to use and develop robotics algorithms and cyber physical systems                                                                                    |

|   |                                                         | 4 | Creates wider design analysis on RCPS and fabricate<br>engineering systems that interact with humans and the<br>environment and create sustainable solutions        |
|---|---------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                         |   |                                                                                                                                                                     |
|   |                                                         | 1 | Describe IOT,IIOT                                                                                                                                                   |
| 3 | IIoE 5.0 for<br>Automation and                          | 2 | Understand the opportunities, challenges brought<br>about by Industry 4.0 and how organizations and<br>individuals should prepare to reap the benefits              |
|   | Robotic systems                                         | 3 | Understand, design, and develop the real life IoT applications using off the shelfhardware and software                                                             |
|   |                                                         | 4 | Understand the concepts of Design Thinking                                                                                                                          |
|   |                                                         | 1 | To understand the concepts of Artificial<br>Intelligence                                                                                                            |
| 4 | Artificial intelligence &<br>Machine learning           | 2 | To understand the concepts of neural networks                                                                                                                       |
|   |                                                         | 3 | To elaborate machine learning methods                                                                                                                               |
|   |                                                         | 4 | To understand the concepts of Fuzzy logic                                                                                                                           |
|   |                                                         | 1 | Acquire knowledge about the fundamental principles, Robot Sensors, and implementation strategies of Internal Sensors and Inertial Sensors.                          |
|   |                                                         | 2 | Provide solutions for Ultrasonic Sensors in Home,<br>industry, Vision, Stereo Vision, and Proximity<br>Sensors                                                      |
| 1 | Robotics: Design of<br>Sensors, Drives and<br>Actuators | 3 | Understanding Robot Actuators and Industrial<br>Robots, cooperative robotics Electrical actuators,<br>automated kitchen, studying about various home<br>automation. |
|   |                                                         | 4 | Fundamentals of Motors, DC Motors;<br>understanding Functionality of the Harmonic Drive<br>Justify the use of robots in DC and AC servo drives<br>for axis motors   |

|   | 1 |                                                              | 1 |                                                                                                                                            |
|---|---|--------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | Autonomous mobile<br>Robot systems                           | 1 | Understand the basics of Autonomous Mobile<br>Robots dynamics and design electronics to<br>complement those features.                      |
|   |   |                                                              | 2 | Understand Mobile robot kinematics and dynamics,<br>Motion Control                                                                         |
| 2 |   |                                                              | 3 | Examining the autonomous mobile robot Perceptions with algorithms.                                                                         |
|   |   |                                                              | 4 | Design studies on embedded to Automotive Electronics protocols vehicle testing, vibration.                                                 |
|   |   |                                                              |   |                                                                                                                                            |
|   |   | Swam Robotics Control<br>Systems                             | 1 | Understand the principles and various Swam<br>Robotics Control Systems                                                                     |
|   |   |                                                              | 2 | Knowledge explore on multi-agent systems, Parallel, Scalable, Stable.                                                                      |
| 3 |   |                                                              | 3 | Design concepts of Swam Robotics Control Systems and Creating Advanced behavior module.                                                    |
|   |   |                                                              | 4 | Analyze and Evaluate the Cooperative algorithms,<br>earlier progress of swarm robotics algorithms,<br>Features of swarm robotics algorithm |
|   |   | Automated Dynamic<br>Analysis of MEMS<br>sensors & actuators | 1 | Fundamentals of Micro and nano mechanics, Piezo Resistive Pressure sensors.                                                                |
|   |   |                                                              | 2 | Design of Actuators and calibration of different sensors                                                                                   |
| 1 |   |                                                              | 3 | Apply and analysis Optical encoder and tactile and proximity                                                                               |
|   |   |                                                              | 4 | Apply and analysis Electro-pneumatic actuator,<br>Electrical actuating systems and Piezoelectric<br>actuator.                              |
| 2 |   | Human Machine<br>Interface & Brain<br>Machine Interface      | 1 | Understanding the basics of HMI: Asimov's Laws,<br>GUI Design, Aesthetics, Developments inBio-<br>Chips, Heuristics.                       |
|   |   |                                                              | 2 | Understanding the HMI Technologies such as<br>GMOS Models, CMN-GOMS, Fitts Laws, Hick-<br>Hyman Laws, Norman's 7 Principles.               |


|   |  |                                  | 3 | Understanding the concept of Brainwaves & BMI                                                                                                                                                               |
|---|--|----------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |  |                                  | 4 | Analyzing Humanoids & HMI/BMI Applications:<br>Hierarchical Task] Analysis, Dialog Design, Use of<br>FEM                                                                                                    |
|   |  | Computer Vision &<br>Application | 1 | Implement fundamental image processing techniques required for computer vision.                                                                                                                             |
|   |  |                                  | 2 | Apply Hough Transform for line, circle, and ellipse detections                                                                                                                                              |
| 3 |  |                                  | 3 | Apply 3D vision techniques. Implement motion related techniques; develop applications using computer vision techniques.                                                                                     |
|   |  |                                  | 4 | Understands motion analysis. To study some applications of computer vision algorithms.                                                                                                                      |
|   |  | LiDAR & RADAR<br>System Control  | 1 | Understand the Principles and design concepts of various LiDARSystems and control Mechanisms.                                                                                                               |
|   |  |                                  | 2 | Study and analysis LiDAR Beam Steering and Optics System                                                                                                                                                    |
| 4 |  |                                  | 3 | Analyze an existing radar system, synthesize the information, and explain to an audienceto establish the principle working CW radar, FM-CW radar                                                            |
|   |  |                                  | 4 | Creating strong knowledge on algorithm for design<br>radarsin various autonomy control                                                                                                                      |
| 7 |  | SEMINAR                          |   | Enhancing verbal delivery, body language, power<br>point skills, structuring the presentation, engaging<br>audience, tone of presentation for the overall<br>improvement of individual presentation skills. |

| 8 | TECHNICAL<br>SKILLING - I                                        |                  | Enhancing the system design and modeling<br>capabilities through visualization of scientific<br>theories and concepts while building and<br>developing the capabilities of designing a new<br>system by altering and implementing new algorithm<br>and methods through visualization tools.                                                                          |
|---|------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Advanced Robotic<br>Wireless Sensor<br>Networks                  | 1<br>2<br>3<br>4 | To know the Basic Robots Advancements and<br>terminologies<br>To impart knowledge in Advances in Robotic<br>Kinematics<br>Examining the Varieties of Robots & Advanced<br>Robotics Heterogeneity (ARH)<br>Understanding the Robotic Wireless Sensor<br>Networks and Design project on various robots                                                                 |
| 2 | Algorithms for<br>Robotics Sensor Fusion                         | 1<br>2<br>3<br>4 | To expose the students to the concepts and<br>techniques used in sensor data fusion<br>To impart skills needed to develop and apply data<br>fusion algorithms<br>To expose the students, the state of the art in multi<br>sensor/ source integration, target tracking and<br>identification<br>Gain a knowledge onsensor fusion algorithms with<br>autonomous robots |
| 3 | Microelectromechanica<br>l Sensors and Actuators<br>for Robotics | 1<br>2<br>3<br>4 | Ability to understand the operation of micro<br>devices, micro systems and their applications<br>Ability to design the micro devices, micro systems<br>using the MEMS fabrication process.<br>Gain a knowledge of basic approaches for various<br>sensor design for robotics<br>Gain a knowledge of basic approaches for various<br>actuator design for robotics     |

|   | Autonomous mobile                    | 1 | Knowledge explore on Robot locomotion, and<br>Types of locomotion, unchartered territories in the<br>Universe.        |
|---|--------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------|
| 4 | robots and Automotive<br>Electronics | 2 | Design of mobile robot kinematics and dynamics, holonomic and nonholonomic constraints.                               |
|   | Systems                              | 3 | Development of passive/active sensors and mobile robots like global positioning system.                               |
|   |                                      | 4 | Apply and analysis of path planning algorithms based on A-star, Dijkstra                                              |
|   |                                      | 1 | Understand the Principles and design concepts of various adaptive control Mechanisms.                                 |
| 1 | Adaptive motion control systems for  | 2 | Understand the Principles and design concepts of Autonomous Tracked Robots                                            |
| 1 | automation and robotics              | 3 | Understand the Principles and design concepts of<br>Motion Vision and Motion estimation                               |
|   |                                      | 4 | Understand the Principles and design of Optimization for Motion Control Systems                                       |
|   |                                      | 1 | Software Defined Radio (SDR)                                                                                          |
|   | FPGA-Based Wireless                  | 2 | Analysis of FPGA Speed, Area & Power                                                                                  |
| 2 | System Design                        | 3 | Advanced Encryption Standards & High-Level Design                                                                     |
|   |                                      | 4 | FPGA for Wireless System                                                                                              |
|   |                                      | 1 | Basics classification of signals & types<br>Characterization, typical Signal Processing<br>operations                 |
| 3 | Signal Processing for<br>Robotics    | 2 | Construction of manipulators, advantages and disadvantages of various kinematic structures. Applications              |
|   | KODOUCS                              | 3 | Design Feedback systems, encoders Kinematics,<br>homogeneous coordinate solution of the inverse<br>kinematic problem. |
|   |                                      | 4 | Apply and analysis Programming Language:<br>Mobile robots, walking devices. Robot reasoning.                          |

|   | -                                        |   |                                                                                                                                                                                                                 |
|---|------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                          | 1 | Automation principles and strategies, Methods of Work part Transport.                                                                                                                                           |
| 4 | Cloud Robotics and                       | 2 | Control Functions, Automation for Machining<br>Operations and Assembly Systems and Line<br>Balancing.                                                                                                           |
|   | Automation                               | 3 | Storage System Performance, Automated Storage/Retrieval Systems, Carouse                                                                                                                                        |
|   |                                          | 4 | Sensor Technologies for Automated Inspection and Analytical Models.                                                                                                                                             |
|   |                                          | 1 | Develop Machine Learning based Optimization models for various problem specific solutions.                                                                                                                      |
| 1 |                                          | 2 | Apply evolutionary programming and strategies in engineering aspects.                                                                                                                                           |
| 1 | Optimization<br>algorithms for           | 3 | Design Mathematical Models of Genetic Algorithmsfitness functions.                                                                                                                                              |
|   | autonomous systems                       | 4 | Apply and analysis of advanced autonomous optimization techniques.                                                                                                                                              |
|   | Automotive Electronics<br>& Avionics     | 1 | Understand the fundamentals of comprehensive knowledge on automotive electronics.                                                                                                                               |
| 2 |                                          | 2 | Explore and conjugate the emerging technologies utilized to assist the Autonomous Vehicles.                                                                                                                     |
|   |                                          | 3 | Communication and Navigation of automated vehicle using vehicle intelligence                                                                                                                                    |
|   |                                          | 4 | Acquire the basic knowledge on aviation technology.                                                                                                                                                             |
| 3 | Design of automation                     | 1 | Acquire knowledge about the fundamental principles, hierarchy level, architecture, functions, and implementation strategies of Distribution Automation Systems (DAS) and Distribution Management Systems (DMS). |
|   | systems and Assistive<br>Robotic systems | 2 | Provide solutions for Automation in Home, industry,<br>Advanced Research Laboratories                                                                                                                           |
|   |                                          | 3 | Understanding industrial robots and robotics arms, cooperative robotics arms, automated kitchen, studying about various home automation.                                                                        |

|   |                          | 4 | Study of the robot assistive technology;<br>understanding the Human Activity Assistive<br>Technology (HAAT) model. Understanding of the<br>Assistive Robotic Manipulators (ARM) Justify the<br>use of robots in rehabilitation. Discuss the current<br>international safety standards for robotic assistive<br>technologies. |
|---|--------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | TERM PAPER               | 1 | Enhancing the skill sets in research by recognize and<br>identifying problems, exploring/defining the<br>problem by gathering information, formulation of<br>the research objectives, addressing the problem<br>through scientific process and methods.                                                                      |
| 5 | TECHNICAL<br>SKILLING-II | 1 | Enhancing the system design and modeling<br>capabilities through visualization of scientific<br>theories and concepts while building and developing<br>the capabilities of designing a new system by<br>altering and implementing new algorithm and<br>methods through visualization tools.                                  |

